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The conventional definition of a topological metric over a space specifies properties that must be
obeyed by any measure of “how separated” two points in that space are. Here it is shown how to
extend that definition, and in particular the triangle inequality, to concern arbitrary numbers of
points. Such a measure of how separated the points within a collection are can be bootstrapped,
to measure “how separated” from each other are two (or more) collections. The measure presented
here also allows fractional membership of an element in a collection. This means it directly concerns
measures of “how spread out” a probability distribution over a space is. When such a measure is
bootstrapped to compare two collections, it allows us to measure how separated two probability
distributions are, or more generally, how separated a distribution of distributions is.

PACS numbers:

I. INTRODUCTION

The conventional definition of a topological metric for-
malizes the concept of distance. It specifies properties
required of any function that purports to measure “how
separated” two elements of a space are. However often
one wants to measure “how separated” the members of
a collection of more than two elements is. The conven-
tional way to do this is to combine the pair-wise metric
values for all pairs of elements in the collection, into an
aggregate measure. This is ad hoc however.
As an alternative, here the formal definition of a topo-

logical metric is extended to apply to collections of more
than two elements. In particular, the triangle inequal-
ity is extended to concern such collections. The measure
presented here applies even to collections with duplicate
elements (i.e., to bags). It also applies to collections with
“fractional” numbers of elements, i.e., to probability dis-
tributions.
This measure can be directly incorporated into many

domains where ad hoc combinations of pair-wise metrics
are currently used. In addition, when applied to different
projections of a high-dimensional data set, it provides a
novel type of vector-valued characterization of that data
set.
This new measure can be bootstrapped in a natural

way, to measure “how separated” from each other two
collections are. In other words, given a measure ρ of
how separated from each other the elements in an arbi-
trary collection ξ are, one can define a measure of how
separated from each other two collections ξ1 and ξ2 are.
(Intuitively, the idea is to subtract the sum of the mea-
sure’s values for each of the two separate collections ξ1
and ξ2 from the value of the measure for the union of
the collections.) More generally, one can measure how
separated a collection of such collections is. Indeed, with
fractional memberships, such bootstrapping allows us to
measure how separated a distribution of distributions is.
In the next section the definition of a multi-argument

metric (multimetric, for short) is presented. Also in
that section is an extensive set of examples and a list
of some elementary properties. For instance, it is shown

that the standard deviation of a probability distribution
across RN is a multimetric, whereas the variance of that
distribution is not.
The following section presents a way to bootstrap from

a multimetric for elements within a collection to a multi-
metric over collections. Some examples and elementary
properties of this bootstrapped measure are also in that
section.
A short concluding section considers some of the pos-

sible uses of multimetrics.

II. MULTIMETRICS

Collections of elements from a space X are represented
as vectors of counts, i.e., functions from x ∈ X →
{0, 1, 2, . . .}. So for example, if X = {A,B,C}, and we
have the collection of three A’s, no B’s, and one C, we
represent that as the vector (3, 0, 1). This use of the
support of a vector to indicate points is analagous to
how wave functions are interpreted in quantum mechan-
ics. Like in quantum mechanics, here it is natural to
extend the representation; for current purposes we only
need extend it to include functions from x ∈ X to R. In
particular, doing this allows us to represent probability
distributions (or density functions, depending on the car-
dinality of X) over X. Accordingly, our formalization of
multimetrics will provide a measure for how how spread
out a distribution over distributions is.[11] Given X, the
associated space of all functions fromX to R is written as
RX . The subspace of functions that are nowhere-negative
is written as (R+)X .
As a notational comment, integrals are written with

the measure implicitly set by the associated space. In
particular, for a finite space, the point-mass measure is
implied, and the integral symbol indicates a sum. In ad-
dition δx is used to indicate the appropriate type of delta
function (Dirac, Kronecker, etc.) about x. Other short-
hand is RX ≡ (R+)X − {0} and ||v|| means

∫

dx v(x).
In this representation of collections of elements from

X, any conventional metric taking two arguments in X
can be written as a function ρ over a subset of the vectors
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in RX . That subset consists of all vectors that either
have two of their components equal to 1 and all others
0, or one component equal to 2 and all others 0. For
example, for X = {A,B,C}, the metric distance between
A and B is ρ(1, 0, 1), and from A to itself is ρ(2, 0, 0).

Generalizing this, a multimetric for T (X) ⊆ RX is
defined as a real-valued function ρ over RX such that
∀u, v, w ∈ RX ,

1) u, v, w ∈ T (X) ⇒ ρ(u+v) ≤ ρ(u+w)+ρ(v+w).

2) ρ(u) ≥ 0, ρ(kδx) = 0 ∀x, k > 0.

3) ρ(u) = 0 ⇒ u = kδx for some k, x.

Consider the requirement for a (two-argument) metric
that it be symmetric under permutation of the points its
considering. The analogous requirement that a multi-
metric be symmetric under permutations of the elements
in the collection is satisfied automatically, simply due
to how that collection is represented. Next consider the
case where collections, if only one x ∈ X is in a collec-
tion (perhaps occurring more than once), then only one
component of u is non-zero. Accordingly, conditions (2)
and (3) are extensions of the usual condition defining a
metric that it be non-negative and equal 0 iff its argu-
ments are the same. Condition (1) is an extension of
the triangle inequality, to both allow repeats of elements
from X and/or more than two elements from X to be in
the collection. Note though that condition (1) involves
sums in its argument rather than (as in a conventional
norm-based metric for a Euclidean space) differences. In-
tuitively, T (X) is that subset of RX over which the gen-
eralized version of the triangle inequality holds.[12]

Condition (1) implies that multimetrics obey a second
triangle inequality, just as conventional metrics do:

ρ(u+ v) ≥ |ρ(u+ w)− ρ(v + w)|.

(This follows by rewriting condition (1) as ρ(u + w) ≥
ρ(u+ v)− ρ(v + w), and then relabeling twice.)

Example 1: Set X = RN . Take T (X) to be those
elements of RX whose norm equals 1, i.e., the proba-
bility density functions over RN . Then have ρ(s) for
any s ∈ RX (whether in T (X) or not) be the stan-
dard deviation of the distribution s

||s|| , i.e., ρ(s) =
√

1
2

∫

dxdx′ s(x)s(x′)
||s||2 (x− x′)2.

Conditions (2) and (3) are immediate. To understand
condition (1), first, as an example, say that all three of
u, v and w are separate single delta functions over X.
Then condition (1) reduces to the conventional triangle
inequality over RN , here relating the points (in the sup-
ports of) u, v and w. This example also demonstrates
that the variance (i.e., the square of our ρ) is not a mul-
timetric.

For a vector s that involves multiple delta functions,
ρ(s) measures the square root of the sum of the squares of
the Euclidean distances between the points (in the sup-
port of) s. In this sense it tells us how “spread out” those
points are. Condition (1) even holds for vectors that are
not sums of delta functions however (see appendix).

Example 2: As a variant of Ex. 1, have X be the unit
simplex in RN , and use the same ρ as in Ex. 1. In this
case any element of X is a probability distribution over a
variable with N possible values. So any element of T (X)
is a probability density function over such probability
distributions. In particular, say s is a sum of some delta
functions for such an X. Then ρ(s) measures how spread
out the probability distributions in (the support of) s are.
If those probability distributions are themselves sums of
delta functions, they just constitute subsets of our N val-
ues, and ρ(s) measures how spread out from one another
those subsets are.

Example 3: As another variant of Ex. 1, for any X,
take T (X) = RX . Define the tensor contraction 〈s |
t〉 ≡

∫

dxdx′s(x)t(x)F (x, x′) where F is symmetric and
nowhere-negative, and where F (x, x′) = 0 ⇔ x = x′.

Then ρ(s) ≡
√

〈s | s〉 obeys conditions (2) and (3) by
inspection. It also obeys condition (1) (see appendix).
Note that the 〈., .〉 operator is not an inner product

over RX , the extension of T (X) to a full vector space.
When components of s can be negative, 〈s, s〉 may be as
well. Note also that there is a natural differential geomet-
ric interpretation of this ρ when X consists of N values.
Say we have a curve on an N -dimensional manifold with
metric tensor F at a particular point on the curve, and
that at that point the tangent vector to the curve is s.
Then ρ(s) is the derivative of arc length along that curve,
evaluated at that point.
This suggest an extension of this multimetric, in which

rather than a tensor contraction between two vectors, we
form the tensor contraction of n vectors: 〈s1, . . . , sn〉 ≡
∫

dx1 . . . dxns1(x1) . . . sn(xn)F (x1, . . . , xn), where F is
invariant under permutation of its arguments, nowhere-
negative, and equals 0 if and only if all its arguments
have the same value. Any ρ(s) that is a monotonically

increasing function of 〈s, s, . . . , s〉1/n automatically obeys
conditions (2) and (3).

It is worth collecting a few elementary results concern-
ing multimetrics:

Lemma 1:

1. Let {ρi} be a set of functions that obey conditions
(2) and (3), and {ai} a set of non-negative real
numbers at least one of which is non-zero. Then
∑

i aiρi also obeys conditions (2) and (3).

2. Let {ρi} be a set of functions that obey condition
(1), and {ai} a set of non-negative real numbers at
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least one of which is non-zero. Then
∑

i aiρi also
obeys condition (1).

3. Let f : R → R+ be a monotonically increasing
concave function that equals 0 when its argument
does. Then if ρ is a multimetric for some T (X),
f(ρ) is also a multimetric for T (X) (see appendix).

4. Let f : X → Y be invertible, and let ρY be a multi-
metric over Y . Define the operator Bf : RX → RY

by [Bf (s)](y) ≡ s(f−1(y)) if f−1(y) exists, 0 oth-
erwise. Bf is a linear operator. This means
ρX(s) ≡ ρY (Af (s)) is a multimetric [13].

Example 4: Take X = RN again, and let T (X) be all of
RX with bounded support. Then by Lemma 1, the width
along x1 of (the support of) s ∈ T (X) is a multimetric
function of s (see appendix).
This means that the average of the width in x1 over all

possible rotations of X is also a multimetric. Similarly,
consider the smallest axis-parallel box enclosing the (sup-
port of the) Euclidean points in s. Then the sum of the
lengths of the edges of that box is a multimetric function
of s.
On the other hand, while the volume of that box obeys

conditions (2) and (3), in general it can violate condition
(1). Similarly, the volume of the convex hull of the (sup-
port of) the points in s obeys conditions (2) and (3) but
can violate (1). (In general, multimetrics have the di-
mension of a length, so volumes have to be raised to the
appropriate power to make them be multimetrics.)
It is worth comparing the sum-of-edge-lengths multi-

metric to the standard deviation multimetric of Ex. 1 for
the case where all arguments s are finite sums of delta
functions (i.e., “consist of a finite number of points”). For
such an s we can write the sum-of-edge-lengths multimet-
ric as a sum over all N dimensions i of maxj s

j
i−minj s

j
i ,

where sj is the j’th point in s. In contrast, the (square
of the) standard deviation multimetric is also a sum over
all i, but of the (square of the) standard deviation of the
i’th components of the points in s. Another difference is
that the standard deviation multimetric is a continuous
function of its argument, unlike the sum-of-edge-lengths
multimetric.

Example 5: Let X be countable and have T (X) = RX .
Then ρ(s) =

∫

dxΘ(s(x)) − 1 where Θ is the Heaviside
function is a multimetric (see appendix). This is the
volume of the support of s, minus 1.

Example 6: Let X be countable and have T (X) = RX .
Then ρ(s) = ||s|| − maxxs(x) obeys conditions (2) and
(3), by inspection. Canceling terms, for this ρ condition
(1) holds iff maxx(u(x) + v(x)) ≥ maxx(u(x) + w(x)) +
maxx(v(x) + w(x)) − 2||w||. This is not true in general,
for example when ||w|| = 0 and the supports of u and
v are disjoint. However if we take T (X) to be the unit

simplex in RX , then condition (1) is obeyed, and ρ is a
multimetric (see appendix).

Example 7: Let X have a finite number of elements and
set T (X) = RX . Say that ρ(s) = 0 along all of the axes,
and that everywhere else, k ≤ ρ(s) ≤ 2k for some fixed
k > 0. Then ρ is a multimetric.

A. Vector-valued multimetrics

It is straightforward to extend the definition of a mul-
timetric to have range RM rather than R, so long as one
has a linear ordering over RM to specify the appropri-
ate extension of condition (1). For example, consider

the component-wise ordering: ∀a, b,~a ≤ ~b⇔ ai ≤ bi ∀i ∈
{1, 2, . . .M}. Say we have a set ofM scalar multimetrics.
Then theM -fold Cartesian product of those multimetrics
is an M -dimensional multimetric, when component-wise
ordering defines the inequality in condition (1).
More generally, say we have chosen such a linear order-

ing over RM , and have an M -dimensional function with
domain RX . Say this function obeys conditions (1) and
(2) of anM -dimensional multimetric for our linear order-
ing. Then this function can be used as a low-dimensional
characterization of an element of RX . In general, such
characterizations may have M is less than |RX |, the di-
mension of the space in which RX is embedded, and may
violate condition (1). The following examples illustrates
this:

Example 8: Consider again Ex. 1. To define our vector-
valued multimetric for the X of Ex. 1, say we have a
scalar multimetric ρR for the subspace, X

′ = T (X ′) = R.
Let {v1, v2, . . . vM} be a set ofM unit norm vectors living
inX. Then we can define ourM -dimensional multimetric
by

ρi(u) ≡ ρR[fu,vi(t)];

fu,vi(t) ≡
∫

dx u(x)δ(vi · x− t).

To illustrate this, take M = N and have the {vi} be
the unit normals along the N axes of X. Let u be a sum
of delta functions; u = δx1 + δx2 . Let ρR be the standard
deviation multimetric of Ex. 1 for one-dimensional prob-
ability density functions. So each component ρi(u) is just
the i’th component of the difference x1−x2. Accordingly,
u can be reconstructed from the vector ρi(u).
In this illustration conditions (1) and (2) are imme-

diate. If M = N , then condition (3) also holds for u’s
like the one considered here that are sums of two delta
functions, but not more generally. Now modify this il-
lustration by having M < N and the {vi} not all point
along the axes of X. Then for general u, the components
ρi(u) are the projections of u along the different vec-
tors {vi}. As in techniques like Principal Components
Analysis [2], those projections provide a low-dimensional
characterization of u.
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III. CONCAVITY GAPS AND DISPERSIONS

In Ex. 1, ρ can be used to tell us how spread out
a distribution over RN is. One would like to be able
to use that ρ to construct a measure of how spread out
a collection of multiple distributions over RN is. Intu-
itively, we want a way to construct a metric for a space
of sets (generalized to be able to work sets with dupli-
cates, fractional memberships, etc.) from a metric for
the members within a single set. This would allow us
to directly incorporate the distance relation governing X
into the distance relation for RX .
To do this, first let {Y, S(Y )} be any pair of a subset

of a vector space together with a subset of RY such that

∀g ∈ S(Y ),
∫

dyg(y)y
||g|| ∈ Y . (As an example, we could take

Y to be any convex subspace of a vector space, with S(Y )
any subset of RY .) Then the associated concavity gap

operator C : S(Y )→ RS(Y ) is defined by

(Cσ)(g) = σ(

∫

dy g(y)y

||g|| )−
∫

dy g(y)σ(y)

||g||

where y ∈ Y , and both σ and g are arbitrary elements
in S(Y ). So the concavity gap operator takes any single
member of the space S(Y ) (namely σ) and uses it to
generate a function (namely, Cσ) over all of S(Y ).[14]
In particular, say Y = T (X) for some space X. Say

we are given a multimetric σ measuring the (X-space)
spread specified by any element of Y . Say we are also
given a g which is a normalized distribution over Y . Then
Cσ(g) is a measure of how spread out the distribution g is.
Note that in this example space S(Y ) is both the space
of multimetrics over Y and the space of distributions for
Y , exemplified by σ and g, respectively.
We can rewrite the definition of the concavity gap in

several ways:

Cσ(g) = σ(Eg(y))− Eg(σ)

= σ(
y · g
||g|| )−

σ · g
||g||

where Eg means expected value evaluated according to
the probability distribution g

||g|| , and in the last expres-

sion y is the (infinite-dimensional) matrix whose y’th col-
umn is just the vector y, and the inner products are over
the vector space S(Y ). Taken together, these equations
say that the concavity gap of σ, applied to the distribu-
tion g, is given by evaluating the function σ at the center
of mass of the distribution g, and then subtracting the
inner product between σ and g.

Example 9: Let Y = RN , and choose S(Y ) to be
the set of nowhere-negative functions of Y with non-

zero magnitude. Choose σ(y) = 1 − ∑N
i=1 y

2
i . Then

Cσ(g) = V ar( g
||g|| ).

Example 10: Say X has N values, with T (X) = RX .
Consider a u ∈ T (X) whose components are all either 0

or some particular constant a such that
∫

dx u(x) = 1.
So u is a point on the unit hypercube in T (X), projected
down to the unit simplex. Let T be the set of all such
points u. In the usual way, the support of each element
of T specifies a set of elements of X.
Let Y = T (X), and have S(Y ) = RY . Have g be

a uniform average of a countable set of delta functions,
each of which is centered on a member of T . So each of
the delta functions making up g specifies a set of elements
of X; g is a specification of a collection of such X-sets.
In this scenario σ(Eg(y)) is σ applied to the union (over

X) of all the X-sets specified in g. In contrast, Eg(σ) is
the average value you get when you apply σ to one of
the X-sets specified in g. Cσ(g) is the difference between
these two values. Intuitively, it reflects how much overlap
there is among the X-sets specified in g.

Example 11: Say X has N values, with T (X) = RX .
Have Y = T (X), and S(Y ) = RY , i.e., the set of all
nowhere-negative non-zero functions over those points
in RN with no negative components. Choose σ(y) =
H(y) ∀y ∈ Y , where H(.) = −

∫

dy y(x)ln[y(x)], the
Shannon entropy function extended to non-normalized
y. This σ is a natural choice to measure how “spread
out” any point in Y with magnitude 1 is.
Have g be a sum of a set of delta functions, about the

distributions over B, {v1, v2, . . .}. Then Cσ(g) is a mea-
sure of how “spread out” those distributions are. In the
special case where g = δv1 + δv2 , Cσ(g) is the Jensen-
Shannon divergence between v1 and v2 [6, 8]. More gen-
erally, if g is a probability density function across the
space of all distributions over B, Cσ(g) is a measure of
how “spread out” that density function is.

There are several elementary properties of concavity
gaps worth mentioning:

Lemma 2:

1. C is linear.

2. Cσ is linear⇔ it equals 0 everywhere⇔ σ is linear.

3. Cσ is continuous ⇔ σ is continuous.

4. Cσ(g) = 0 if g ∝ δy′ for some y
′ ∈ Y .

5. Giving Cσ and the values of σ at 1 + |Y | distinct
points in Y fixes the value of σ across all Y . (|Y |
is the dimension of Y .)

6. The equivalence class of all σ′ having a particular
concavity gap Cσ is the set of functions of y ∈ Y
having the form {σ(y) + b · y + a : a ∈ R, b ∈
Y, σ(y) + b · y + a ∈ S(Y )}.

Proof: (2.1) and (2.4) are immediate. The first iff in
(2.2) follows from the fact that Cσ(g) = Cσ(αg) ∀α ∈ R.
To see the forward direction of the second iff, take
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g = δy/2 and h = δy′/2 and expand Cσ(g + h) =
σ(y+ y′)− [σ(y)+σ(y′)]. To see the forward direction of
(2.3), choose g to have its center of mass infinitesimally
to one side of the discontinuity in σ, and then move it
infinitesimally to the other side to get a discontinuity in
the associated values of (C(σ))(g).
To prove (2.5), consider the case where Y is one-
dimensional for simplicity. Say I give you σ at A and
at B > A, and also give you Cσ. Then for every C > B,
choose g = B−C

A−C δA +
A−B
A−C δC . Evaluating the associated

value Cσ(g) = σ(B)− B−C
A−C σ(A)− A−B

A−C σ(C) allows us to

solve for σ(C). Similar reasoning holds for C < A and
C ∈ (A,B). For higher dimensions we need the value of
σ at one extra point for each extra dimension of Y . This
completes the proof.
To prove (2.6), first note that all members of that set do
indeed have the same concavity gap, Cσ. To complete
the proof we must show that there are no other σ with
that concavity gap. Let σ′ be any element of S(Y ) with
the same concavity gap as σ. By (2.5), if we know the
value of σ′ at a total of 1+ |Y | points in Y , then we know
σ′ in toto. In turn, for any such set of 1 + |Y | values, we
can always find an a and b such that a + b · y + σ(y)
lies in S(Y ) and has those values. This means that σ′ is
identical to that a+ b · y + σ(y). QED.

By (2.4), Cσ necessarily obeys the second part of condi-
tion (2) if S(Y ) = RY .
Next define a (strict) dispersion over a space X as

a (strictly) concave real-valued function over RX that
obeys conditions (2) and (3) of a multimetric ∀u, v, w ∈
RX .

Example 12: Take X = {1, 2}, with T (X) = RX =
R2 − {0}. Define σ(u ∈ R2) to equal 0 if u1 = 0 or
u2 = 0, and equal ln(1+u1)+ln(1+u2) otherwise. Then
σ is a (not everywhere continuous) strict dispersion.

Example 13: The X,RX , and ρ of Ex. 3 form a strict
dispersion (see appendix).

Example 14: The X,RX , and σ of Ex. 5 form a dis-
persion.

Example 15: The X,RX , and σ of Ex. 11 form a strict
dispersion.

There are several relations between concavity gaps and
dispersions:

Lemma 3: Let T (X) = RX .

1. σ is a dispersion over T (X) ⇒ σ is nowhere-
decreasing over T (X).

2. σ is a dispersion over T (X) and σ(s) is independent
of ||s|| ∀ s 6= 0 ∈ T (X) ⇒ σ is constant over the
interior of T (X).

3. σ is (strictly) concave over T (X) ⇔ Cσ obeys con-
dition (2) in full (and condition (3)) over T (X).

4. Say that σ is continuous over T (X). Then Cσ is
separately (strictly) concave over each simplex in
T (X) ⇔ σ is (strictly) concave over T (X).

Proof: (3.1) arises from the fact that a dispersion is
both concave and nowhere negative. To establish (3.2),
first consider any two vectors u, v in the interior of T (X)
that differ in only one component, i. Since no compo-
nent of u equals 0, there must be an s ∈ T (X) such
that u

||u|| =
v+s

||v+s|| . (If ui > vi, s = (ui − vi)δi. Other-

wise si = 0, and sj = uj [
vi

ui
− 1] ∀j 6= i.) component is i,

which is set so that vi+si

vj+sj
= ui

uj
for every j 6= i.) By (3.1),

this means that if σ is independent of the magnitude of
its argument, σ(v) ≤ σ(u). Since the reverse argument
must also hold, we have σ(u) = σ(v). Now repeat this
reasoning to equate σ(v) with σ(w) for some w that dif-
fers from v in only one component, but differs from u in
two components. Continuing in this way, we equate σ(u)
with σ(z) for any z that differs in an arbitrary number
of components from u.
(3.3) is immediate from the definition of concavity
and Jensen’s inequality. To derive (3.4), first ex-

pand Cσ(a+b2 ) −
Cσ(a)+Cσ(b)

2 = σ(Ea(y)+Eb(y)
2 ) −

σ(Ea(y))+σ(Eb(y))
2 when ||a|| = ||b|| (y being a generic ar-

gument of T (X).) In other words, this equality holds
when a and b are on the same (not necessarily unit) sim-
plex. Next invoke (2.3) to allow us to apply Jensen’s
inequality. QED.

Let f : R → R be monotonically increasing and strictly
concave. Then by Lemma 3.3, if σ is strictly concave,
f(Cσ) obeys conditions (2) and (3). For example, this is
the case for

√
Cσ. In other words, so long as σ is a strict

dispersion,
√
Cσ obeys those conditions.

On the other hand, Lemma 3.2 means that any non-
trivial σ that normalizes its argument (so that it is a
probability distribution) and then evaluates a function
of that normalized argument cannot be a dispersion. So
for example, if a concavity gap is a dispersion, it must be
constant.
Fortunately it is not the case that if f(Cσ) is a mul-

timetric it must be constant. In particular, often for a
strictly concave σ,

√
Cσ for space {Y, S(Y )} is a multi-

metric for an appropriate T (Y ) ⊆ S(Y ).

Example 16: Choose {σ, Y, S(Y )} as in Ex. 11, and
take T (Y ) to be all elements of S(Y ) which are sums
of two delta functions. This σ is strictly concave, so we
know conditions (2) and (3) are obeyed by

√
Cσ. Fur-

thermore, for this choice of T (Y ), obeying condition (1)
reduces to obeying the conventional triangle inequality of
two-argument metrics, and it is known that the square
root of the Jensen Shannon divergence obeys that in-
equality [3, 8]. Therefore all three conditions are met.
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Example 17: Choose {σ, Y, S(Y )} as in Ex. 9. As in
Ex. 16, this σ is strictly concave, and therefore

√
Cσ

automatically obeys conditions (2) and (3). Now take
T (Y ) = S(Y ). Write Cσ(g) as 〈g, g〉 for the tensor con-
traction of Ex. 3, where F (y, y′) = (y−y′)·(y−y′)

2 . So by

that example, we know that
√
Cσ is a multimetric.

IV. POTENTIAL USES OF MULTIMETRICS

In addition to their intrinsic mathematical interest,
multimetrics have numerous potential applications. One
of them is to allow more nuanced complexity measures
for physical systems, as described in [9]. Following is a
list of some other from machine learning [2]:

1. Mixture of Gaussians density estimation: In den-
sity estimation one is given a data set of vectors
{xi} that were generated by IID sampling an un-
known distribution over X and wants to infer that
distribution. Say we have a probability distribution
across X given by a linear combination of n Gaus-
sian distributions over X, centered at the n points
µi. Such a distribution induces a probability of the
set {xi}. Accordingly, one way to estimate the dis-
tribution that generated {xi} is to search for the
linear combination of n Gaussians that maximizes
the associated probability of {xi}.
One shortcoming of this procedure is that even
though there are a total of n points used to param-
eterize the distribution, that distribution is based
solely on metric values for pairs of points (namely
the distances between x and each of the µi). If
we have a multimetric ρ though, we have sev-
eral ways to avoid this. For example, we could
model the probability of each xi as a Gaussian of
ρ(δxi +

∑

j δµj ). We would then take the probabil-

ity of {xi} to be the product of the probabilities of
the xi, as in conventional Gaussian mixtures mod-
eling. We could even model the probability of {xi}
given the n points µi as a single Gaussian, with
argument ρ(

∑

i δxi +
∑

j δµj ).

2. Kernel density estimation: In kernel density esti-
mation, one does not estimate the distribution over
x as a linear combination of n kernel functions (e.g.,
Gaussians) that are free to be centered anywhere
in X, and then search for which such linear com-
bination maximizes the probability of one’s data.
Instead one centers a kernel function on each of the
data points, and searches for the optimal parame-
ters of those kernels functions. Conventionally such
kernel functions only take two arguments. However
exactly as in application 1, if one has a multimetric
over X, one can use kernel functions whose argu-
ment involves more than two points at once.

3. Classification can always be done via density esti-
mation and Bayes’ theorem. So with applications
1 and 2, we have new ways of doing classification.

4. Kernel machines are a recent advance in machine
learning in which data is first mapped non-linearly
into a feature space where standard algorithms
(like linear regression, linear discriminant analysis,
PCA, etc) are applied [1]. Because of the non-linear
mapping such methods work even when relation-
ships in the data are highly non-linear. All that is
required for such methods is a positive definite ker-
nel function, k(x, x′), giving inner products in the
feature space. Multimetrics are not positive defi-
nite functions but can easily be made so by taking
k(x, x′) = exp[−ρ(δx + δx′)] as the kernel. So any
of the multimetrics discussed above can be used for
statistical analysis with kernel-based learning algo-
rithms. In particular, this is the case for either
for supervised or unsupervised learning with kernel
machines. In particular, we can use exponentials of
multimetrics for regression by using them instead
of the conventional kernels of kernel machines, with
the multiplicative coefficients of each kernel (in the
linear combination that gives our fit to the data) set
to minimize some appropriate quadratic objective
function.

V. APPENDIX

A. Proof of Lemma 1.3

That f(ρ) obeys conditions (2) and (3) when ρ does
is immediate. To prove that condition (1) is obeyed,
consider any u, v, w ∈ T (X) such that ρ(u + v) ≤ ρ(u +
w) + ρ(v + w). First assume that ρ(u+ v) ≤ max[ρ(u+
w), ρ(v + w)]. Then since f is increasing, f(ρ(u + v)) ≤
max[f(ρ(u+w)), f(ρ(v+w))]. Since in turn max[f(ρ(u+
w)), f(ρ(v + w))] ≤ f(ρ(u+ w)) + f(ρ(v + w), condition
(1) is obeyed.
Now consider the other case, where ρ(u + v) >

max[ρ(u + w), ρ(v + w)]. In this situation, because f
is concave, we know that f increases ρ(u + v) less than
it increases both ρ(u + w) and/or ρ(v + w). So again
condition (1) is obeyed. QED.

B. Proof of claim in Ex. 1

Consider any u, v and w whose norms equal 1. Then
squaring both sides of condition (1) for our ρ implies that
V ar(u+v

2 ) ≤ V ar(u+w
2 ) + V ar( v+w2 ) +

2
√

V ar(u+w
2 )V ar( v+w2 ).

Use the expansion V ar( s+t2 ) = V ar(s)+V ar(t)
2 +

(Es(x)−Et(x)
2 )2 and cancel terms. The hardest case for
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the resultant inequality to hold is where our three vari-
ances all equal 0. Setting them to 0, we see that condition
(1) holds if for any three real numbers a, b, c,
|a− b| ≤ |a− c|+ |b− c|.

This is just the conventional triangle inequality though.
So condition (1) always holds. QED.

C. Proof of claim in Ex. 3

First note that for any s ∈ T (X), 〈s | s〉 ≥ 0, since
all all components of F are non-negative. Furthermore,
all s, t ∈ T (X), 〈s | t〉 ≥ 0, since all components of those
vectors are non-negative as are all components of F . In
addition, we can use the properties of F to prove that our
tensor contraction obeys the Cauchy-Schwartz inequal-
ity: 〈u | v〉2 ≤ 〈u | u〉〈v | v〉 ∀u, v ∈ T (X). (Exampnd
〈s, s〉 ≥ 0 for s ≡ u− αv. Solve for the α minimizing the
lefthand side (which is quadratic in α), and plug that in.
Collecting terms establishes the desired inequality.)
Now to check condition (1) for our ρ, square both sides

of it and cancel terms. So the lefthand side is just 〈u | v〉.
Since all inner products are non-negative, the right-hand
side is bounded below by

√

〈u | u〉〈v | v〉. Plugging in the
Cauchy-Schwarz inequality establishes that condition (1)
does indeed hold. QED.

D. Proof of claim in Ex. 4

Conditions (2) and (3) are immediate. To prove con-
dition (1), first note that it holds for ρ1(s) = max(x1 :
s(x1 6= 0). Then note that it holds for ρ1(s) = −min(x1 :
s(x1 6= 0), and invoke Lemma 1.2, to see that the width
in x1 of the support obeys condition (1). QED.

E. Proof of claim in Ex. 5

Conditions (2) and (3) are immediate. Condition (1)
also holds if (the supports of) u and v overlap, since any
non-zero volume must equal at least 1, and that overlap
volume gets counted twice in the sum ρ(u + w) + ρ(v +
w), regardless of w. If (the supports of) u and v do
not overlap, then (the support of) w must either extend
outside of (the support) of u or of v. This means that
condition (1) must hold in this case as well. QED.

F. Proof of claim in Ex. 6

Define argmaxxu(x) ≡ a, argmaxxv(x) ≡
b,maxx(u(x) + v(x)) ≡ M , and maxx(u(x) + w(x)) +

maxx(v(x) + w(x)) − 2||w|| ≡ N ; we want to prove
that M > N . To that end, note that if the support
of w(x) is restricted to a and b, then N becomes
u(a) + v(b) − ||w|| = u(a) + v(b) − 1 ≤ u(a). On the
other hand, M is bounded below by u(a). So condition
(1) holds for this situation.

We now consider the situation where w’s support is
not restricted to a and b. It will be useful to define
argmaxx(u(x)+w(x)) = d and argmaxx(v(x)+w(x)) = e.
First consider the case where d 6= e. Then it is immedi-
ate that by transferring any w(c 6∈ {d, e}) to w(d) and/or
w(e), we do not decrease N (since ||w|| doesn’t change).
We can then transfer w(d) to w(a) and w(e) to w(b),
again not decreasing N . After doing this for all such
points c, we recover the case where the support of w(x)
is restricted to a and b, as in the preceding paragraph.
So we can conclude that condition (1) is obeyed for this
case.

The remaining case to consider is where d = e. For this
case we can transfer all w(c 6= d) to w(d), and in doing so
increase N . Doing this for all such c restricts w’s support
to d. After having done this, maxx(u(x)+w(x)) = u(d)+
||w|| ≤ u(a) + 1, and similarly maxx(v(x) + w(x)) ≤
v(b) + 1. So we again get N ≤ u(a) + v(b) − 1, which
means M ≥ N . There are no more cases to consider.
QED.

G. Proof of claim in Ex. 13

First note that we have already established that our
ρ obeys conditions (2) and (3) of being a multimetric,
and therefore only need to establish that it is strictly
concave. That will be the case iff ρ(αu + (1 − α)v) ≤
αρ(u) + (1 − α)ρ(v) ∀u ∈ T (X), v ∈ T (X), α ∈ [0, 1].
Square both sides of this inequality and cancel terms.
Then exploit the Cauchy Schwarz inequality for 〈. | .〉,
established in the proof of the claim in Ex. 3. QED.
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